Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 16(6)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37375828

RESUMO

Among all available antimicrobials, antibiotics hold a prime position in the treatment of infectious diseases. However, the emergence of antimicrobial resistance (AMR) has posed a serious threat to the effectiveness of antibiotics, resulting in increased morbidity, mortality, and escalation in healthcare costs causing a global health crisis. The overuse and misuse of antibiotics in global healthcare setups have accelerated the development and spread of AMR, leading to the emergence of multidrug-resistant (MDR) pathogens, which further limits treatment options. This creates a critical need to explore alternative approaches to combat bacterial infections. Phytochemicals have gained attention as a potential source of alternative medicine to address the challenge of AMR. Phytochemicals are structurally and functionally diverse and have multitarget antimicrobial effects, disrupting essential cellular activities. Given the promising results of plant-based antimicrobials, coupled with the slow discovery of novel antibiotics, it has become highly imperative to explore the vast repository of phytocompounds to overcome the looming catastrophe of AMR. This review summarizes the emergence of AMR towards existing antibiotics and potent phytochemicals having antimicrobial activities, along with a comprehensive overview of 123 Himalayan medicinal plants reported to possess antimicrobial phytocompounds, thus compiling the existing information that will help researchers in the exploration of phytochemicals to combat AMR.

2.
Plants (Basel) ; 12(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36771511

RESUMO

Environmental contamination with a myriad of potentially toxic elements (PTEs) is triggered by various natural and anthropogenic activities. However, the industrial revolution has increased the intensity of these hazardous elements and their concentration in the environment, which, in turn, could provoke potential ecological risks. Additionally, most PTEs pose a considerable nuisance to human beings and affect soil, aquatic organisms, and even nematodes and microbes. This comprehensive review aims to: (i) introduce potentially toxic elements; (ii) overview the major sources of PTEs in the major environmental compartments; (iii) briefly highlight the major impacts of PTEs on humans, plants, aquatic life, and the health of soil; (iv) appraise the major methods for tackling PTE-caused pollution; (v) discuss the concept and applications of the major eco-technological/green approaches (comprising phytoextraction, rhizofiltration, phytostabilization, phytovolatilization, and phytorestoration); (vi) highlight the role of microbes in phytoremediation under PTE stress; and (vii) enlighten the major role of genetic engineering in advancing the phytoremediation of varied PTEs. Overall, appropriate strategies must be developed in order to stop gene flow into wild species, and biosafety issues must be properly addressed. Additionally, consistent efforts should be undertaken to tackle the major issues (e.g., risk estimation, understanding, acceptance and feasibility) in order to guarantee the successful implementation of phytoremediation programs, raise awareness of this green technology among laymen, and to strengthen networking among scientists, stakeholders, industrialists, governments and non-government organizations.

3.
Biology (Basel) ; 11(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36290318

RESUMO

The importance of traditional and indigenous knowledge is acknowledged on a worldwide scale for its coexistence principles and sustainable use techniques. In view of this, the present study is an attempt to document the ethno-veterinary plants used by the tribal communities of Western Himalaya. This study also provides the scientific validation of herbal medicines used in ethno-veterinary practices through a reverse pharmacological approach. A total of 59 informants were selected through a non-probability sampling method. Detailed information on the medicinal plants used in ethno-veterinary practices along with their habits and habitats, part/s used, remedy preparation methods, additives/ingredients used during preparation and administration, dosages administered, and route of administration was collected. Data was analyzed for the Relative Frequency of Citations (RFC), Use Values (UV), Informant Consensus Factor (ICF), and Jaccard Index (JI). Further, a reverse pharmacological approach was used for scientific validations of the documented herbal knowledge of plant species. During the study, 56 plant species belonging to 54 genera and 39 families were documented. Asteraceae was the dominant family followed by Lamiaceae, Amaranthaceae and Fabaceae. Life forms were dominated by herbaceous species and leaves were the most common plant parts used. The highest Relative Frequency of Citations (RFC) and Use Values (UV) were recorded for Brassica rapa L. (Brassicaceae). The Pearson correlation coefficient between RFC and UV shows a strong positive correlation between the proportion of uses of a plant species within a sample of informants and the number of times that a particular use of a plant species was mentioned by the informant. Studies of the biological activity of ethno-veterinary plants can provide clues of promising leads for the isolation and identification of useful compounds that may be developed into pharmaceuticals for human welfare.

4.
Biology (Basel) ; 11(7)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-36101443

RESUMO

The structure and distribution patterns of Himalayan vegetation are poorly explored, and research on species composition along the elevation gradient in these mountain ranges is still deficient. The current study was undertaken to analyze the variation and pattern of plant species composition along a vertical gradient in northwestern Himalaya, India. A total of 18 sites were selected along an elevation gradient ranging from 2200 to 3900 m asl positioned at an interval of 100 m. The Renyi diversity profile, non-metric multidimensional scaling based on the Bray-Curtis dissimilarity metric and beta diversity components among the elevation belts were calculated. Furthermore, to study the influence of altitude on species richness and diversity, a generalized additive model was created. Two hundred and ten plant species representing 66 families and 147 genera were recorded. The Renyi diversity profiles show that the lower and mid-altitudes had rich species diversity. The results of the non-metric multidimensional scaling analysis show a considerable variation in the total plant species composition among the studied elevation belts. The observed multiple-site Sorensen dissimilarity index across the studied elevation belts was very high. The contribution of species replacement or the turnover component to the observed dissimilarity was much higher than the nestedness component. Furthermore, the herbaceous and tree richness showed a significant decrease with increase in elevation; however, the richness of shrubs showed a bimodal pattern. The present study increases our understanding of the trends and patterns of species richness along the vertical gradient in the Himalayan region.

5.
Saudi J Biol Sci ; 28(4): 2109-2122, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33911927

RESUMO

The natural populations of Dactylorhiza hatagirea have been greatly affected due to incessant exploitation. As such, studies on its population attributes together with habitat suitability and environmental factors affecting its distribution are needed to be undertaken for its conservation in nature. Present study aimed at accessing an impact of anthropogenic pressure on population structure and locate suitable habitats for the conservation of this critically endangered orchid. Considerable changes in the phytosociological attributes were observed on account of the changing magnitude and extent of anthropogenic threat in their natural abode. The distribution pattern of species indicated that more than 90% of the populations exhibit substantially aggregated spatial distribution. Maximum Entropy (MaxEnt) distribution modelling algorithm was used to predict suitable habitat and potential area for its cultivation and reintroduction. Twenty-seven occurrence records, nineteen bioclimatic variables, altitude, and slope were used. MaxEnt map output gave the habitat suitability for this species and predicted its distribution in the North-Western Himalayas of India for approximately 616 km2. Jackknifing indicated that maximum temperature of warmest month, annual mean temperature, mean temperature of the driest quarter, and mean temperature of the wettest quarter were the governing factors for its distribution and hence, presented a higher gain with respect to other variables. According to permutation importance, precipitation seasonality and mean temperature of wettest quarter shows the prominent impact on the habitat distribution. Results of AUC (area under curve) were statistically significant (0.940) and the line of predicted omission falls very close to an omission on training samples, validating a better run of the model. Response curves revealed a probable increase in the occurrence of D. hatagirea with an increase in mean temperature of the wettest quarter and maximum temperature of the warmest month contributed more than 50% to predicted habitat suitability. Direct field observations concurrent with predicted habitat suitability and google-earth images represent greater model thresholds for successful inception of the species. Together, the study proposes that the species can be conserved in or near its present-day natural habitats and is equally effective in determining the possible habitats for its cultivation and reintroduction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA